Harmonic Analysis on Homogeneous Vector Bundles on Hyperbolic Spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Vector Bundles on Quantum Homogeneous Spaces

The notion of quantum group equivariant homogeneous vector bundles on quantum homogeneous spaces is introduced. The category of such quantum vector bundles is shown to be exact, and its Grothendieck group is determined. It is also shown that the algebras of functions on quantum homogeneous spaces are noetherian.

متن کامل

Harmonic Analysis on Homogeneous Spaces

This article is an expository paper. We first survey developments over the past three decades in the theory of harmonic analysis on reductive symmetric spaces. Next we deal with the particular homogeneous space of non-reductive type, the so called Siegel-Jacobi space that is important arithmetically and geometrically. We present some new results on the Siegel-Jacobi space.

متن کامل

On characterizations of hyperbolic harmonic Bloch and Besov spaces

‎We define hyperbolic harmonic $omega$-$alpha$-Bloch space‎ ‎$mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and‎ ‎characterize it in terms of‎ ‎$$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}‎},$$ where $0leq gammaleq 1$‎. ‎Similar results are extended to‎ ‎little $omega$-$alpha$-Bloch and Besov spaces‎. ‎These obtained‎...

متن کامل

Harmonic Spinors on Homogeneous Spaces

Let G be a compact, semi-simple Lie group and H a maximal rank reductive subgroup. The irreducible representations of G can be constructed as spaces of harmonic spinors with respect to a Dirac operator on the homogeneous space G/H twisted by bundles associated to the irreducible, possibly projective, representations of H. Here, we give a quick proof of this result, computing the index and kerne...

متن کامل

Flows on Vector Bundles and Hyperbolic Sets

This note deals with C. Conley's topological approach to hyperbolic invariant sets for continuous flows. It is based on the notions of isolated invariant sets and Morse decompositions and it leads to the concept of weak hyperbolicity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tokyo Journal of Mathematics

سال: 1995

ISSN: 0387-3870

DOI: 10.3836/tjm/1270043470